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Catalytic asymmetric epoxidation of olefins is very useful for Scheme 1. Asymmetric Epoxidation of Allylic Alcohols and
the synthesis of enantiomerically enriched epoxides, which are Homoallylic Alcohols by Vanadium and BHA Complexes
versatile building blocks for the synthesis of natural products and P

biologically active substances. There are many efficient protocols ° Ph OY\CPha

to mediate the epoxidation of allylic alcohols to provide satisfactory O’N‘OH O’N\OH

yields and enantioselectivitidsHowever, very limited catalyst O O
systems can be used for the asymmetric epoxidation of homoallylic O%\(Ph O)\/cphs
alcohols and those substrates in which olefin is located further from Ph 1a ®

the hydroxy group. Sharpless asymmetric epoxidation, which was
efficient for allylic alcohols, could not provide homoallylic alcohols R VO(0-i-Pr)s or VO(acac), (1 mol%) R

with satisfactory enantioselectiviti@3.The protocol reported by Rjg\/o"' ligand 1 (2 mol%) R%VOH
our group, which used vanadium aaeamino acid-based hydrox- R aqueous TBHP, CHCl ortoluene R

amic acid ligands to perform the asymmetric epoxidation of e-oe = 95% ee
homoallylic alcohols, was found to be efficiett.Unfortunately, ) \ R
however, the enantioselectivitiestodinsandcis-substituted olefins . 1 Vo o o) R W
were not satisfactory. Thus, there has been no truly efficient catalytic \%\AOH o} OH
asymmetric epoxidation of homoallylic alcohols reported. Recently,

we reported a vanadium-catalyzed epoxidation of allylic alcohols Table 1. Screening of Ligands

with newly designed bishydroxamic acid (BHA) ligandsa@and
1b),6 which has the following features: (1) high enantioselectivity , o
for a wide scope of allylic alcohols, (2) less than 1 mol % catalyst P on e Ph%é\/\OH
loading, (3) mild reaction conditions, and (4) use of aqueeus 2a CHF;{, 1t°2|ﬁene 3a
butyl hydroperoxide (TBHP) as an achiral oxidant instead of

CHP, toluene, rt R

VO(O-i-Pr)3 (1 mol%)

i - entry” ligand %yield’, %ee
anhydrous TBHP° (Scheme 1). Herein, we report a new modified
BHA ligand that is suitable for highly enantioselective vanadium-
catalyzed epoxidation of homoallylic alcohols. 1 o R= ‘g@ 2,7
Initial experimental modification showed that cumene hydrop- oﬁ/\CR3
eroxide (CHP) was better than TBHP to facilitate and complete N.
the transformation, and toluene was used as solvent to inhibit 2 O ’g: ¢ R= -EW 56, 90
cyclization of the produced epoxide to the corresponding tetrahy- E\/CR
drofuran byproduct (Scheme 1), One mol % catalyst loading was o ®

Et
enough to perform the reaction at room temperature. Reaction
proceeded smoothly, and moderate enantioselectivity as well as 3 4 R= _gEt 61, 96
good yield was achieved dtawhen ligandlb was used (Table 1, Et

entry 1). With this promising result in hand, new ligands based on
1b were synthesized. The enantioselectivity was increased to 90% 2 All reactions were carried out in toluene in the presence of 1.5 equiv

ee with1c. Finally, 1d, which was introduced with a more hindered  ©f cumene hydroperoxide (CHP) (88%) unless otherwise indicatedlated
T yield after chromatographic purificatiohEnantiomeric excess values were

substituted phenyl group, was found to be excellent for the reaction; getermined by chiral HPLC (AD-H), and the detailed information is provided
96% ee was obtained @&a, while the rate of the reaction was also  in the Supporting Information.

facilitated (Table 1). . . . : Scheme 2. Kinetic Resolution of Homoallylic Alcohols
The scope of the reaction was investigated wlithunder the 1 ot ligand;

modified conditions. Gratifyingly, botltrans- and cis-substituted Hoﬁ/\ 0.5 mol% VO(O-iPr)s Ho/\‘/\ /\/<C{’
HO™ ™
R R T :

= R

epoxides were achieved with virtually complete enantioselectivities 0.7 equiv. CHP;
and satisfactory yields. toluene, rt, 30h

With the successful results of the asymmetric epoxidation of gg%F;CgT% Jieid ggéyi:cig% Jield
homoallylic alcohols, this catalyst system was applied to the kinetic ' '
resolution of these alcohols with outstanding selectivitées @b 4b, R=C4Hyg 5b, R=C4Hy

(Scheme 2). Both the starting homoallylic alcohols and epoxy 96%6ce, ST%yield - 97%ce, 48% yield

alcohols were obtained with satisfactory enantiopufity.should
also be noted that this kinetic resolution gave us an opportunity to starting homoallylic alcohols can be synthesized efficiently using
generate asymmetric carbon in a completely new scheme. In fact,preexisting chemistry of allylic aniori3.
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Table 2. Scope of Substrates

R VO(0-Pr)3 (1 mol%) R
RWOH ligand 1d (2 mol%) R \Ki)\/\OH
R CHP, toluene R
2 1, 24h 3
entry’ HAA epoxy alcohol %yield’, %ee, config.
Ph Ph
1 j|\/\ E)/\ 3a 90, 96
OH OH
2a
o
Ph Php ”
2 EA 85, 99
oH HO
2b
R
3 Wl\/\ . 3c,R=CH, 85, 93 (3R, 4R)
4 OH \I;o/\ 3d, R=CsHy; 89, 96
5 2c-e 3, R=CeH;3 92, 98
6 C\ 3f,R=C.Hs 92, 95 (3R, 4S)
| R
3g, R=C3H;
7 oH c 90, 97
8 oH 3mR=CHy gy g9
2f '
9 3, R=CsHi1 9o g9

a All reactions were carried out in toluene in the presence of 1.5 equiv
of cumene hydroperoxide (CHP) (88%) unless otherwise indicltedlated
yield after chromatographic purificatioAEnantiomeric excess values were
determined by either chiral HPLC or chiral GC, and the detailed information
is provided in the Supporting Information.

The absolute configurations &c and 3f were determined as
(BRA4R) and (R 49), respectively, by comparison of reported optical
rotation2>3>13n summary, we have designed a new chiral bishy-
droxamic acid ligand, which has been shown to be excellent for
the vanadium-catalyzed asymmetric epoxidation and kinetic resolu-
tion of homoallylic alcohols. Further studies focusing on broader
application of our chiral vanadiurrhydroxamic acid complexes
to wider scope are ongoing.
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To explain these enantioselectivities, as well as those of kinetic resolutions,
we proposed a possible model of the asymmetric epoxidation of homoal-
lylic alcohol catalyzed by the complex of vanadium and ligaddwhich

is provided in the Supporting Information.
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